Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 883
Filter
1.
Chinese Journal of Biochemistry and Molecular Biology ; 37(1):1-10, 2021.
Article in Chinese | EMBASE | ID: covidwho-20244920

ABSTRACT

COVID-19 is a severe acute respiratory syndrome caused by a novel coronavirus, SARS-CoV- 2.COVID-19 is now a pandemic, and is not yet fully under control.As the surface spike protein (S) mediates the recognition between the virus and cell membrane and the process of cell entry, it plays an important role in the course of disease transmission.The study on the S protein not only elucidates the structure and function of virus-related proteins and explains their cellular entry mechanism, but also provides valuable information for the prevention, diagnosis and treatment of COVII)-19.Concentrated on the S protein of SARS-CoV-2, this review covers four aspects: (1 ) The structure of the S protein and its binding with angiotensin converting enzyme II (ACE2) , the specific receptor of SARS-CoV-2, is introduced in detail.Compared with SARS-CoV, the receptor binding domain (RBD) of the SARS-CoV- 2 S protein has a higher affinity with ACE2, while the affinity of the entire S protein is on the contrary.(2) Currently, the cell entry mechanism of SARS-CoV-2 meditated by the S protein is proposed to include endosomal and non-endosomal pathways.With the recognition and binding between the S protein and ACE2 or after cell entry, transmembrane protease serine 2(TMPRSS2) , lysosomal cathepsin or the furin enzyme can cleave S protein at S1/S2 cleavage site, facilitating the fusion between the virus and target membrane.(3) For the progress in SARS-CoV-2 S protein antibodies, a collection of significant antibodies are introduced and compared in the fields of the target, source and type.(4) Mechanisms of therapeutic treatments for SARS-CoV-2 varied.Though the antibody and medicine treatments related to the SARS-CoV-2 S protein are of high specificity and great efficacy, the mechanism, safety, applicability and stability of some agents are still unclear and need further assessment.Therefore, to curb the pandemic, researchers in all fields need more cooperation in the development of SARS-CoV-2 antibodies and medicines to face the great challenge.Copyright © Palaeogeography (Chinese Edition).All right reserved.

2.
Birth Defects Research ; 115(8):844, 2023.
Article in English | EMBASE | ID: covidwho-20243926

ABSTRACT

Background: Studies suggest perinatal infection with SARSCoV- 2 can induce adverse birth outcomes, but studies published to date have substantial limitations. Most have identified cases based upon their presentation for clinical care, and very few have examined pandemic-related stress which may also impact adverse birth outcomes. Objective(s): To evaluate the relationships between SARSCoV- 2 infection in pregnancy and pandemic-related stress with birth outcomes. Study Design: We conducted an observational study of 211 mother-newborn dyads in three urban cohorts participating in the Environmental Influences on Child Health Outcomes (ECHO) Program. Serology for SARS-CoV-2 was assessed in a convenience sample of prenatal maternal, cord serum or dried blood spots from births occurring between January 2020-September 2021. Specimens were assessed for IgG, IgM, and IgA antibodies to nucleocapsid, S1 spike, S2 spike, and receptor-binding domain. A Pandemic-related Traumatic Stress (PTS) scale was based on the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition Acute Stress Disorder criteria. Result(s): 36% were positive for at least one antibody type, chiefly IgG. Self-report of infection was not significantly correlated with combined serology. There were no differences in gestational age (GA), birth weight, preterm birth (PTB), or low birth weight (LBW) among seropositive mothers. However, IgM seropositive mothers had children with lower BW (434g, 95% CI: 116- 752), BW Z score-for-GA (0.73 SD, 95% CI 0.10-1.36) and were more likely to deliver preterm (OR 8.75, 95% CI 1.22-62.4). Associations with LBW sustained in sensitivity analyses limited to pre-vaccine samples, and PTS symptoms were not associated with birth outcomes. The addition of PTS did not substantially change associations with BW, although associations with PTB attenuated to near-significance. Conclusion(s): We identified decreased birth weight and increased prematurity in mothers IgM seropositive to SARS-CoV-2, independent of PTS. Though there are limits to interpretation, the data support efforts to prevent SARS-CoV-2 infections in pregnancy.

3.
Journal of Biological Chemistry ; 299(3 Supplement):S396-S397, 2023.
Article in English | EMBASE | ID: covidwho-20243840

ABSTRACT

Objective: Immunohistochemistry of post-mortem lung tissue from Covid-19 patients with diffuse alveolar damage demonstrated marked increases in chondroitin sulfate and CHST15 and decline in N-acetylgalactosamine-4-sulfatase. Studies were undertaken to identify the mechanisms involved in these effects. Method(s): Human primary small airway epithelial cells (PCS 301-010;ATCC) were cultured and exposed to the SARSCoV- 2 spike protein receptor binding domain (SPRBD;AA: Lys310-Leu560;Amsbio). Expression of the spike protein receptor, angiotensin converting enzyme 2 (ACE2), was enhanced by treatment with Interferon-beta. Promoter activation, DNA-binding, RNA silencing, QPCR, Western blots, ELISAs, and specific enzyme inhibitors were used to elucidate the underlying molecular mechanisms. Result(s): Treatment of the cultured cells by the SPRBD led to increased CHST15 and CHST11 expression and decline in ARSB expression. Sulfotransferase activity, total chondroitin sulfate, and sulfated glycosaminoglycan (GAG) content were increased. Phospho-T180/T182-p38-MAPK and phospho- S423/S425-Smad3 were required for the activation of the CHST15 and CHST11 promoters. Inhibition by SB203580, a phospho-p38 MAPK inhibitor, and by SIS3, a Smad3 inhibitor, blocked the CHST15 and CHST11 promoter activation. SB203580 reversed the SPRBD-induced decline in ARSB expression, but SIS3 had no effect on ARSB expression or promoter activation. Phospho-p38 MAPK was shown to reduce retinoblastoma protein (RB) S807/S811 phosphorylation and increase RB S249/T252 phosphorylation. E2F-DNA binding declined following exposure to SPRBD, and SB203580 reversed this effect. This indicates a mechanism by which SPRBD, phospho-p38 MAPK, E2F, and RB can regulate ARSB expression and thereby impact on chondroitin 4-sulfate and dermatan sulfate and molecules that bind to these sulfated GAGs, including Interleukin-8, bone morphogenetic protein-4, galectin-3 and SHP-2 (Src homology region 2-containing protein tyrosine phosphatase 2). Conclusion(s): The enzyme ARSB is required for the degradation of chondroitin 4-sulfate and dermatan sulfate, and accumulation of these sulfated GAGs can contribute to lung pathophysiology, as evident in Covid-19. Some effects of the SPRBD may be attributable to unopposed Angiotensin II, when Ang1-7 counter effects are diminished due to binding of ACE2 with the SARS-CoV-2 spike protein and reduced production of Ang1-7. Aberrant cell signaling and activation of the phospho-p38 MAPK and Smad3 pathways increase CHST15 and CHST11 production, which can contribute to increased chondroitin sulfate in infected cells. Decline in ARSB may occur as a consequence of effects of phospho-p38 MAPK on RB phosphorylation and E2F1 availability. Decline in ARSB and the resulting impaired degradation of sulfated GAGs have profound consequences on cellular metabolic, signaling, and transcriptional events. Funding is VA Merit Award.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

4.
Current Topics in Pharmacology ; 26:39-47, 2022.
Article in English | EMBASE | ID: covidwho-20243739

ABSTRACT

This study compares the serological antibody level post-COVID-19 vaccine among healthy subjects and psychiatric patients on antidepressant therapy. It also examines the difference in antidepressants' side effects experienced by psychiatric patients following the completion of two vaccine doses. A comparative posttest quasi-experimental study was conducted among healthy subjects and psychiatric patients on antidepressant medication in a teaching hospital in Malaysia. Elecsys Anti-SARS-CoV-2 assay was used to detect the antibody titre between weeks 4 and 12 post vaccination. The antidepressant side-effect checklist (ASEC) was used to monitor the occurrence of antidepressant-related side effects pre-and post-vaccination. 24 psychiatric patients and 26 healthy subjects were included. There was no significant difference in the antibody level between the patients (median = 1509 u/ml) and the healthy subjects (median = 995 u/ml). There was no significant worsening in the antidepressant-related side effects. The antibody level post-COVID-19 vaccine did not differ significantly between patients on antidepressant therapy and healthy subjects. Additionally, there was no change in the antidepressant side effects experienced by the patients following the completion of the vaccine.Copyright © 2022, Research Trends (P) LTD.. All rights reserved.

5.
Biotechnology and Biotechnological Equipment ; 37(1), 2023.
Article in English | Scopus | ID: covidwho-20243309

ABSTRACT

The aim of this study was to evaluate the impact of the most frequent Asn501 polar uncharged amino acid mutations upon important structural properties of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Surface Glycoprotein RBD–hACE2 (human angiotensin-converting enzyme 2) heterodimer. Mutations N501Y, N501T and N501S were considered and their impact upon complex solubility, secondary motifs formation and intermolecular hydrogen bonding interface was analyzed. Results and findings are reported based on 50 ns run in Gromacs molecular dynamics simulation software. Special attention is paid on the biomechanical shifts in the receptor-binding domain (RBD) [499-505]: ProThrAsn(Tyr)GlyValGlyTyr, having substituted Asparagine to Tyrosine at position 501. The main findings indicate that the N501S mutation increases SARS-CoV-2 S-protein RBD–hACE2 solubility over N501T, N501 (wild type): (Formula presented.), (Formula presented.). The N501Y mutation shifts (Formula presented.) -helix S-protein RBD [366-370]: SerValLeuTyrAsn into π-helix for t > 38.5 ns. An S-protein RBD [503-505]: ValGlyTyr shift from (Formula presented.) -helix into a turn is observed due to the N501Y mutation in t > 33 ns. An empirical proof for the presence of a Y501-binding pocket, based on RBD [499-505]: PTYGVGY (Formula presented.) 's RMSF peak formation is presented. There is enhanced electrostatic interaction between Tyr505 (RBD) phenolic -OH group and Glu37 (hACE2) side chain oxygen atoms due to the N501Y mutation. The N501Y mutation shifts the (Formula presented.) hydrogen bond into permanent polar contact;(Formula presented.);(Formula presented.). © 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

6.
New Journal of Chemistry ; 2023.
Article in English | EMBASE | ID: covidwho-20238253

ABSTRACT

A novel phenoxy-bridged trinuclear nickel(ii) complex [Ni3(mu-L)2(bipy)3](1) (where H3L= (E)-2-hydroxy-N-(2-hydroxy-3,5-diiodophenyl)-3,5-diiodobenzohydrazonic acid, bipy = 2,2'-bipyridyl) has been designed and synthesized as a potential antivirus drug candidate. The trinuclear Ni(ii) complex [Ni3(mu-L)2(bipy)3](1) was fully characterized via single crystal X-ray crystallography. The unique structure of the trinuclear nickel(ii) complex crystallized in a trigonal crystal system with P3221 space group and revealed distorted octahedral coordination geometry around each Ni(ii) ion. The X-ray diffraction analysis established the existence of a new kind of trinuclear metal system containing nickel(ii)-nickel(ii) interactions with an overall octahedral-like geometry about the nickel(ii) atoms. The non-bonded Ni-Ni distance seems to be 3.067 and 4.455 A from the nearest nickel atoms. The detailed structural analysis and non-covalent supramolecular interactions are also investigated by single crystal structure analysis and computational approaches. Hirshfeld surfaces (HSs) and 2D fingerprint plots (FPs) have been explored in the crystal structure to investigate the intermolecular interactions. The preliminary analysis of redox and magnetic characterization was conducted using cyclic voltammetry measurements and a vibrating sample magnetometer (VSM), respectively. This unique structure shows good inhibition performance for SARS-CoV-2, Omicron and HIV viruses. For insight into the potential application of the Ni(ii) coordination complex as an effective antivirus drug, we have examined the molecular docking of the trinuclear Ni(ii) complex [Ni3(mu-L)2(bipy)3](1) with the receptor binding domain (RBD) from SARS-CoV-2 (PDB ID: 7MZF), Omicron BA.3 variant spike (PDB ID: 7XIZ), and HIV protease (PDB ID: 7WCQ) viruses. This structure shows good inhibition performance for SARS-CoV-2, Omicron S protein and HIV protease viruses;the binding energies (DELTAG) and the respective Ki/Kd (inhibition/dissociation constants) correlation values are -8.9 (2.373 muM or 2373 nM), -8.1 (1.218 muM or 1218 nM) and -7.9 (0.874 muM or 874 nM), respectively. The results could be used for rational drug design against SARS-CoV-2 Omicron variant and HIV protease viruses.Copyright © 2023 The Royal Society of Chemistry.

7.
Chinese Traditional and Herbal Drugs ; 54(8):2523-2535, 2023.
Article in Chinese | EMBASE | ID: covidwho-20235800

ABSTRACT

Objective To explore the core targets and important pathways of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induced atherosclerosis (AS) progression from the perspective of immune inflammation, so as to predict the potential prevention and treatment of traditional Chinese medicine (TCM). Methods Microarray data were obtained from the Gene Expression Omnibus (GEO) database for coronavirus disease 2019 (COVID-19) patients and AS patients, and the "limmar" and "Venn" packages were used to screen out the common differentially expressed genes (DEGs) genes in both diseases. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses were performed on the common DEGs to annotate their functions and important pathways. The two gene sets were scored for immune cells and immune function to assess the level of immune cell infiltration. The protein-protein interaction (PPI) network was constructed by STRING database, and the CytoHubba plug-in of Cytoscape was used to identify the hub genes. Two external validation datasets were introduced to validate the hub genes and obtain the core genes. Immuno-infiltration analysis and gene set enrichment analysis (GSEA) were performed on the core genes respectively. Finally the potential TCM regulating the core genes were predicted by Coremine Medical database. Results A total of 7898 genes related to COVID-19, 471 genes related to AS progression;And 51 common DEGs, including 32 highly expressed genes and 19 low expressed genes were obtained. GO and KEGG analysis showed that common DEGs, which were mainly localized in cypermethrin-encapsulated vesicles, platelet alpha particles, phagocytic vesicle membranes and vesicles, were involved in many biological processes such as myeloid differentiation factor 88 (MyD88)-dependent Toll-like receptor signaling pathway transduction, interleukin-8 (IL-8) production and positive regulation, IL-6 production and positive regulation to play a role in regulating nicotinamide adenine dinucleotide phosphate oxidase activity, Toll-like receptor binding and lipopeptide and glycosaminoglycan binding through many biological pathways, including Toll-like receptor signaling pathways, neutrophil extracellular trap formation, complement and coagulation cascade reactions. The results of immune infiltration analysis demonstrated the state of immune microenvironment of COVID-19 and AS. A total of 5 hub genes were obtained after screening, among which Toll-like receptor 2 (TLR2), cluster of differentiation 163 (CD163) and complement C1q subcomponent subunit B (C1QB) genes passed external validation as core genes. The core genes showed strong correlation with immune process and inflammatory response in both immune infiltration analysis and GSEA enrichment analysis. A total of 35 TCMs, including Chuanxiong (Chuanxiong Rhizoma), Taoren (Persicae Semen), Danggui (Angelicae Sinensis Radix), Huangqin (Scutellariae Radix), Pugongying (Taraxaci Herba), Taizishen (Pseudostellariae Radix), Huangjing (Polygonati Rhizoma), could be used as potential therapeutic agents. Conclusion TLR2, CD163 and C1QB were the core molecules of SARS-CoV-2-mediated immune inflammatory response promoting AS progression, and targeting predicted herbs were potential drugs to slow down AS progression in COVID-19 patients.Copyright © 2023 Editorial Office of Chinese Traditional and Herbal Drugs. All rights reserved.

8.
BIOpreparations ; Prevention, Diagnosis, Treatment. 23(1):76-89, 2023.
Article in Russian | EMBASE | ID: covidwho-20234832

ABSTRACT

Monitoring of the proportion of immune individuals and the effectiveness of vaccination in a population involves evaluation of several important parameters, including the level of virus-neutralising antibodies. In order to combat the COVID-19 pandemic, it is essential to develop approaches to detecting SARS-CoV-2 neutralising antibodies by safe, simple and rapid methods that do not require live viruses. To develop a test system for enzyme-linked immunosorbent assay (ELISA) that detects potential neutralising antibodies, it is necessary to obtain a highly purified recombinant receptor-binding domain (RBD) of the spike (S) protein with high avidity for specific antibodies. The aim of the study was to obtain and characterise a SARSCoV-2 S-protein RBD homodimer and a recombinant RBD-expressing cell line, as well as to create an ELISA system for detecting potential neutralising antibodies. Material(s) and Method(s): the genetic construct was designed in silico. To generate a stable producer cell line, the authors transfected CHO-S cells, subjected them to antibiotic pressure, and selected the optimal clone. To isolate monomeric and homodimeric RBD forms, the authors purified the recombinant RBD by chromatographic methods. Further, they analysed the activity of the RBD forms by Western blotting, bio-layer interferometry, and indirect ELISA. The analysis involved monoclonal antibodies GamXRH19, GamP2C5, and h6g3, as well as serum samples from volunteers vaccinated with Gam-COVID-Vac (Sputnik V) and unvaccinated ones. Result(s): the authors produced the CHO-S cell line for stable expression of the recombinant SARS-CoV-2 S-protein RBD. The study demonstrated the recombinant RBD's ability to homodimerise after fed-batch cultivation of the cell line for more than 7 days due to the presence of unpaired cysteines. The purified recombinant RBD yield from culture broth was 30-50 mg/L. Monomeric and homodimeric RBD forms were separated using gel-filtration chromatography and characterised by their ability to interact with specific monoclonal antibodies, as well as with serum samples from vaccinated volunteers. The homodimeric recombinant RBD showed increased avidity for both monoclonal and immune sera antibodies. Conclusion(s): the homodimeric recombinant RBD may be more preferable for the analysis of levels of antibodies to the receptor-binding domain of the SARS-CoV-2 S protein.Copyright © 2023 Authors. All rights reserved.

9.
Germs ; 12(4):507-518, 2022.
Article in English | EMBASE | ID: covidwho-20234801

ABSTRACT

Introduction In this study, we aimed to monitor anti-spike and anti-nucleocapsid antibodies positivity in healthcare workers (HCWs) vaccinated with two doses of inactivated CoronaVac (Sinovac, China) vaccine. Methods Overall, 242 volunteer HCWs were included. Of the participants, 193 were HCWs without history of prior documented COVID-19 (Group 1), while 49 had history of prior documented COVID-19 before vaccination (Group 2). The participants were followed up for SARS-CoV-2 antibodies positivity at four different blood sampling time points (immediately before the second vaccine dose and at the 1st, 3rd months and 141-150 days after the second dose). We investigated the serum IgG class antibodies against SARS-CoV-2 RBD region and IgG class antibodies against SARS-CoV-2 nucleocapsid antigen by chemiluminescent microparticle immunoassay (CMIA) method using commercial kits. Results We found positive serum anti-RBD IgG antibody in 76.4% of the participants (71% in Group 1;98% in Group 2) 28 days after the first dose. When the antibody levels of the groups were compared at the four blood sampling time points, Group 2 anti-RBD IgG levels were found to be significantly higher than those in Group 1 at all follow-up time points. Although anti-RBD IgG positivity persisted in 95.6% of all participants in the last blood sampling time point, a significant decrease was observed in antibody levels compared to the previous blood sampling time point. Anti-nucleocapsid IgG antibody was positive in 12 (6.2%) of participants in Group 1 and 32 (65.3%) in Group 2 at day 28 after the first dose. At the fourth blood sampling time point, anti-nucleocapsid antibodies were found to be positive in a total of 20 (9.7%) subjects, 10 (6.1%) in Group 1 and 10 (23.8%) in Group 2. Conclusions In this study, it was determined that serum antibody levels decreased in both groups after the third month after the second dose in HCWs vaccinated with CoronaVac vaccine.Copyright © GERMS 2022.

10.
American Journal of Reproductive Immunology ; 89(Supplement 1):56-57, 2023.
Article in English | EMBASE | ID: covidwho-20234359

ABSTRACT

Problem: Despite being over 3 years into the pandemic, infants remain highly undervaccinated and at a high risk for hospitalization due to COVID-19. Further investigation as to how maternal health decisions for immunization can reduce morbidity from infant COVID-19 by providing passive immunity is necessary. The objective of this study was to describe the rates of SARS-CoV-2 variant antibody transfer from mother to infant cord blood by trimester ofmaternal vaccination. Methods of study: This is an observational cohort study including mother-infant dyads receiving primary or subsequent booster COVID- 19 vaccines during pregnancy.Unvaccinated, but SARS-CoV-2 infected dyads with were included as a comparison group. We quantified median titer and interquartile range (IQR) for SARS-CoV-2 receptor binding domain (RBD) IgG in infant cord blood samples at delivery using the mesoscale discovery platform (electrochemiluminescence). Primary outcome was infant cord IgG titer by trimester of vaccination for the WA1/2022 RBD IgG and current circulating, immune evasive XBB RBD IgG. Secondary outcome is the percent detectable IgG for each variant. Sensitivity analysis was performed based on known SARS-CoV-2 infection. Result(s): Eighty-three mother-infant dyads were included in this analysis. Seven were vaccinated in the first trimester, 37 in the second trimester, 33 in the third trimester, and 6 were unvaccinated and infected. Twenty-three (30%) of the vaccinated group had known SARS-CoV-2 infection. Most received monovalent mRNA COVID-19 vaccines during pregnancy, aside from two who received the viralvectored Ad26.COV2.S, and two received the bivalent mRNA vaccine during pregnancy. The median cord blood WA1/2020 RBD IgG titer was 5370 (412-7296) for first, 1225 (589-3289) for second, 2623 (664-5809) for third trimester in individuals who received aCOVID-19 vaccine dose during pregnancy, and 45 (10-187) in those unvaccinated and infected. After excluding thosewith infection, the cord blood IgG was 514 (106-4182), 1070 (518-2317), and 2477 (664-4470) for first, second, and third trimester, respectively. The rate of detectable WA1/2020 RBD IgG was 100% for all three trimesters, even when excluding infected individuals. For theXBBvariant, cord bloodRBDIgG titer was 284 (43-1296) for first, 66 (32-227) for second, 173 (45-389) for third trimester, and 10 (10-11) in the unvaccinated/infected group. Excluding infections, the cord blood XBB RBD IgG was 54 (10-128), 44 (25-181), and 152 (45-360) for first, second, and third trimester vaccination, respectively. The rate of detectable XBB IgG in those who received a vaccine during pregnancy were 83%, 91%, and 90% for first, second, and third trimester respectively, compared to 17% in the unvaccinated/infected group. Excluding infections, the rate of XBB RBD IgG detection was 66%, 89%, and 95% for first, second, and third trimester vaccination, respectively. Conclusion(s): Vaccination during pregnancy leads to high rates of detectable cord blood IgG specific to SARS-CoV-2 WA1/2020 variant and current circulating variants (XBB), regardless of trimester of vaccination. Infection history leads to higher cord blood IgG in vaccinated;however, infection alone without vaccination leads to lower titer and greater rates of undetectable cord IgG at delivery.

11.
Journal of Clinical Investigation ; 133(1), 2023.
Article in English | Web of Science | ID: covidwho-20231847

ABSTRACT

Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and vaccinations targeting the spike protein (S) offer protective immunity against coronavirus disease 2019 (COVID-19). This immunity may further be shaped by cross reactivity with common cold coronaviruses. Mutations arising in S that are associated with altered intrinsic virus properties and immune escape result in the continued circulation of SARS-CoV-2 variants. Potentially, vaccine updates will be required to protect against future variants of concern, as for influenza. To offer potent protection against future variants, these second-generation vaccines may need to redirect immunity to epitopes associated with immune escape and not merely boost immunity toward conserved domains in preimmune individuals. For influenza, efficacy of repeated vaccination is hampered by original antigenic sin, an attribute of immune memory that leads to greater induction of antibodies specific to the first-encountered variant of an immunogen compared with subsequent variants. In this Review, recent findings on original antigenic sin are discussed in the context of SARS-CoV-2 evolution. Unanswered questions and future directions are highlighted, with an emphasis on the impact on disease outcome and vaccine design.

12.
Biotechnol J ; : e2300130, 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20244872

ABSTRACT

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused considerable morbidity and mortality worldwide. Although authorized COVID-19 vaccines have been shown highly effective, their significantly lower efficacy against heterologous variants, and the rapid decrease of vaccine-elicited immunity raises serious concerns, calling for improved vaccine tactics. To this end, a pseudovirus nanoparticle (PVNP) displaying the receptor binding domains (RBDs) of SARS-CoV-2 spike, named S-RBD, was generated and shown it as a promising COVID-19 vaccine candidate. The S-RBD PVNP was produced using both prokaryotic and eukaryotic systems. A 3D structural model of the S-RBD PVNPs was built based on the known structures of the S60 particle and RBDs, revealing an S60 particle-based icosahedral symmetry with multiple surface-displayed RBDs that retain authentic conformations and receptor-binding functions. The PVNP is highly immunogenic, eliciting high titers of RBD-specific IgG and neutralizing antibodies in mice. The S-RBD PVNP demonstrated exceptional protective efficacy, and fully (100%) protected K18-hACE2 mice from mortality and weight loss after a lethal SARS-CoV-2 challenge, supporting the S-RBD PVNPs as a potent COVID-19 vaccine candidate. By contrast, a PVNP displaying the N-terminal domain (NTD) of SARS-CoV-2 spike exhibited only 50% protective efficacy. Since the RBD antigens of our PVNP vaccine are adjustable as needed to address the emergence of future variants, and various S-RBD PVNPs can be combined as a cocktail vaccine for broad efficacy, these non-replicating PVNPs offer a flexible platform for a safe, effective COVID-19 vaccine with minimal manufacturing cost and time.

13.
Recent Pat Biotechnol ; 2023 May 23.
Article in English | MEDLINE | ID: covidwho-20242464

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a viral respiratory disease that is associated with severe damage to other human organs. It causes by a novel coronavirus, and it is spreading all over the world. To date, there is some approved vaccine or therapeutic agent which could be effective against this disease. But their effectiveness against mutated strains is not studied completely. The spike glycoprotein on the surface of the coronaviruses gives the virus the ability to bind to host cell receptors and enter cells. Inhibition of attachment of these spikes can lead to virus neutralization by inhibiting viral entrance. AIMS: In this study, we tried to use the virus entrance strategy against itself by utilizing virus receptor (ACE-2) in order to design an engineered protein consisting of a human Fc antibody fragment and a part of ACE-2, which reacts with virus RBD, and we also evaluated this interaction by computational methods and in silico methods. Subsequently, we have designed a new protein structure to bind with this site and inhibit the virus from attaching to its cell receptor, mechanically or chemically. METHODS: Various in silico software and bioinformatic databases were used to retrieve the requested gene and protein sequences. The physicochemical properties and possibility of allergenicity were also examined. Three-dimensional structure prediction and molecular docking were also performed to develop the most suitable therapeutic protein. RESULTS: The designed protein consisted of a total of 256 amino acids with a molecular weight of 28984.62 and 5.92 as a theoretical isoelectric point. Instability and aliphatic index and grand average of hydropathicity are 49.99, 69.57 and -0.594, respectively. CONCLUSIONS: In silico studies can provide a good opportunity to study viral proteins and new drugs or compounds since they do not need direct exposure to infectious agents or equipped laboratories. The suggested therapeutic agent should be further characterized in vitro and in vivo.

14.
Microbiol Spectr ; : e0119023, 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20236977

ABSTRACT

The continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made it challenging to develop broad-spectrum prophylactic vaccines and therapeutic antibodies. Here, we have identified a broad-spectrum neutralizing antibody and its highly conserved epitope in the receptor-binding domain (RBD) of the spike protein (S) S1 subunit of SARS-CoV-2. First, nine monoclonal antibodies (MAbs) against the RBD or S1 were generated; of these, one RBD-specific MAb, 22.9-1, was selected for its broad RBD-binding abilities and neutralizing activities against SARS-CoV-2 variants. An epitope of 22.9-1 was fine-mapped with overlapping and truncated peptide fusion proteins. The core sequence of the epitope, 405D(N)EVR(S)QIAPGQ414, was identified on the internal surface of the up-state RBD. The epitope was conserved in nearly all variants of concern of SARS-CoV-2. MAb 22.9-1 and its novel epitope could be beneficial for research on broad-spectrum prophylactic vaccines and therapeutic antibody drugs. IMPORTANCE The continuous emergence of new variants of SARS-CoV-2 has caused great challenge in vaccine design and therapeutic antibody development. In this study, we selected a broad-spectrum neutralizing mouse monoclonal antibody which recognized a conserved linear B-cell epitope located on the internal surface of RBD. This MAb could neutralize all variants until now. The epitope was conserved in all variants. This work provides new insights in developing broad-spectrum prophylactic vaccines and therapeutic antibodies.

15.
Int J Mol Sci ; 24(10)2023 May 15.
Article in English | MEDLINE | ID: covidwho-20233610

ABSTRACT

Though the bulk of the COVID-19 pandemic is behind, the search for effective and safe anti-SARS-CoV-2 drugs continues to be relevant. A highly pursued approach for antiviral drug development involves targeting the viral spike (S) protein of SARS-CoV-2 to prevent its attachment to the cellular receptor ACE2. Here, we exploited the core structure of polymyxin B, a naturally occurring antibiotic, to design and synthesize unprecedented peptidomimetics (PMs), intended to target contemporarily two defined, non-overlapping regions of the S receptor-binding domain (RBD). Monomers 1, 2, and 8, and heterodimers 7 and 10 bound to the S-RBD with micromolar affinity in cell-free surface plasmon resonance assays (KD ranging from 2.31 µM to 2.78 µM for dimers and 8.56 µM to 10.12 µM for monomers). Although the PMs were not able to fully protect cell cultures from infection with authentic live SARS-CoV-2, dimer 10 exerted a minimal but detectable inhibition of SARS-CoV-2 entry in U87.ACE2+ and A549.ACE2.TMPRSS2+ cells. These results validated a previous modeling study and provided the first proof-of-feasibility of using medium-sized heterodimeric PMs for targeting the S-RBD. Thus, heterodimers 7 and 10 may serve as a lead for the development of optimized compounds, which are structurally related to polymyxin, with improved S-RBD affinity and anti-SARS-CoV-2 potential.


Subject(s)
COVID-19 , Peptidomimetics , Humans , SARS-CoV-2 , Peptidomimetics/pharmacology , Binding Sites , Angiotensin-Converting Enzyme 2/chemistry , Polymyxins , Pandemics , Protein Binding
16.
Heliyon ; 9(6): e16847, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-20230952

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused millions of cases of infections, leading to a global health emergency. The SARS-CoV-2 spike (S) protein plays the most important role in viral infection, and S1 subunit and its receptor-binding domain (RBD) are widely considered the most attractive vaccine targets. The RBD is highly immunogenic and its linear epitopes are important for vaccine development and therapy, but linear epitopes on the RBD have rarely been reported. In this study, 151 mouse monoclonal antibodies (mAbs) against the SARS-CoV-2 S1 protein were characterized and used to identify epitopes. Fifty-one mAbs reacted with eukaryotic SARS-CoV-2 RBD. Sixty-nine mAbs reacted with the S proteins of Omicron variants B.1.1.529 and BA.5, indicating their potential as rapid diagnostic materials. Three novel linear epitopes of RBD, R6 (391CFTNVYADSFVIRGD405), R12 (463PFERDISTEIYQAGS477), and R16 (510VVVLSFELLHAPAT523), were identified; these were highly conserved in SARS-CoV-2 variants of concern and could be detected in the convalescent serum of COVID-19 patients. From pseudovirus neutralization assays, some mAbs including one detecting R12 were found to possess neutralizing activity. Together, from the reaction of mAbs with eukaryotic RBD (N501Y), RBD (E484K), and S1 (D614G), we found that a single amino acid mutation in the SARS-CoV-2 S protein may cause a structural alteration, exerting substantial impact on mAb recognition. Our results could, therefore, help us better understand the function of the SARS-CoV-2 S protein and develop diagnostic tools for COVID-19.

17.
Front Immunol ; 14: 1160283, 2023.
Article in English | MEDLINE | ID: covidwho-20230711

ABSTRACT

Introduction: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been posing a severe threat to global public health. Although broadly neutralizing antibodies have been used to prevent or treat corona virus disease 2019 (COVID-19), new emerging variants have been proven resistant to these antibodies. Methods: In this study, we isolated receptor binding domain (RBD)-specific memory B cells using single-cell sorting method from two COVID-19 convalescents and expressed the antibody to test their neutralizing activity against diverse SARS-CoV-2 variants. Then, we resolved antibody-RBD complex structures of potent RBD-specific neutralizing antibodies by X-ray diffraction method. Finally, we analyzed the whole antibody repertoires of the two donors and studied the evolutionary pathway of potent neutralizing antibodies. Results and discussion: We identified three potent RBD-specific neutralizing antibodies (1D7, 3G10 and 3C11) from two COVID-19 convalescents that neutralized authentic SARS-CoV-2 WH-1 and Delta variant, and one of them, 1D7, presented broadly neutralizing activity against WH-1, Beta, Gamma, Delta and Omicron authentic viruses. The resolved antibody-RBD complex structures of two antibodies, 3G10 and 3C11, indicate that both of them interact with the external subdomain of the RBD and that they belong to the RBD-1 and RBD-4 communities, respectively. From the antibody repertoire analysis, we found that the CDR3 frequencies of the light chain, which shared high degrees of amino acid identity with these three antibodies, were higher than those of the heavy chain. This research will contribute to the development of RBD-specific antibody-based drugs and immunogens against multiple variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Broadly Neutralizing Antibodies , Antibodies, Neutralizing
18.
Cell Rep ; 42(6): 112621, 2023 May 26.
Article in English | MEDLINE | ID: covidwho-2327607

ABSTRACT

Continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is eroding antibody responses elicited by prior vaccination and infection. The SARS-CoV-2 receptor-binding domain (RBD) E406W mutation abrogates neutralization mediated by the REGEN-COV therapeutic monoclonal antibody (mAb) COVID-19 cocktail and the AZD1061 (COV2-2130) mAb. Here, we show that this mutation remodels the receptor-binding site allosterically, thereby altering the epitopes recognized by these three mAbs and vaccine-elicited neutralizing antibodies while remaining functional. Our results demonstrate the spectacular structural and functional plasticity of the SARS-CoV-2 RBD, which is continuously evolving in emerging SARS-CoV-2 variants, including currently circulating strains that are accumulating mutations in the antigenic sites remodeled by the E406W substitution.

19.
Journal of Clinical Rheumatology ; 29(4 Supplement 1):S4-S5, 2023.
Article in English | EMBASE | ID: covidwho-2324507

ABSTRACT

Objectives: Few studies evaluate the immunogenicity and safety of different COVID-19 vaccine platforms in patients with primary Sjogren's Syndrome (pSS). The present study aims to assess the immunogenicity through anti-spike IgG antibodies after the COVID-19 vaccine dose in heterologous groups compared to homologous regimen in patients with pSS. Method(s): These data are from the SAFER study: 'Safety and efficacy of the COVID-19 vaccine in rheumatic disease', a real-life phase IV multicenter longitudinal study, evaluating patients since before the first dose. Pregnant women, those with a history of serious adverse events prior to any vaccine, and those with other causes of immunosuppression were excluded. Patients with pSS > 18 years, classified according to ACR/EULAR 2016 classification criteria were included. Antibodies against the Receptor Binding Domain - RBD portion of the Spike protein of SARS-CoV-2 (IgG-S) were measured by chemiluminescence (Architect SARS-CoV-2 Quanti II, Abbott), before the first dose and 28 days after the 2nd and 3rd dose. Seropositivity was defined as IgG-Spike titers >=7.1 BAU/mL. Patients received adenoviral vector (ChAdOx1, Astrazeneca), mRNA (Pfizer) or inactivated SARS-COV-2 (Coronavac). Non-parametric methods were used. The alpha level of significance was set at 5%. Result(s): 56 participants received 3 doses, 46 +/- 11 years old, disease duration 7.62 years, 92.9% female, 41.1% White and 55.4% Mixed. The homologous third-booster dose group (n = 15, all ChAdOx1) and heterologous group (n = 41) were homogeneous for age, sex, ethnicity, comorbidities, medication and baseline IgG-S median [IQR] titers. After primary vaccination (2 doses) IgG-S median and titers [IQR] were similar in homologous and heterologous groups (373.03 [179.58, 843.92] vs. 473.36 [119.05, 1059.60], p = 0.705). Third-booster dose induced higher IgG-S median [IQR] titers compared to only 2 doses (1229.54 [333.55, 4365.47] vs 464.95 [140.42, 1015.25], p alpha 0.001). Heterologous 3rd-booster induced higher IgG-S median [IQR] titers than homologous scheme with ChAdOx1 (1779.52 [335.83, 4523.89] vs 730.76 [303.37, 1858.98], p = 0.150), Fig 1 and 2, although not statistically significant. Conclusion(s): Third booster dose induced higher humoral immune response compared to two doses whichmay improve protection against COVID-19 in patients with pSS. Although not statistically significant, the response to the heterologous scheme tended to be better than the response to the homologous booster vaccination, which heterologous booster scheme tended to respond better than homologous booster vaccination, which is relevant in this immunosuppressed population. Increasing the sample size will help clarify this issue. .

20.
BIOpreparations ; Prevention, Diagnosis, Treatment. 23(1):76-89, 2023.
Article in Russian | EMBASE | ID: covidwho-2322749

ABSTRACT

Monitoring of the proportion of immune individuals and the effectiveness of vaccination in a population involves evaluation of several important parameters, including the level of virus-neutralising antibodies. In order to combat the COVID-19 pandemic, it is essential to develop approaches to detecting SARS-CoV-2 neutralising antibodies by safe, simple and rapid methods that do not require live viruses. To develop a test system for enzyme-linked immunosorbent assay (ELISA) that detects potential neutralising antibodies, it is necessary to obtain a highly purified recombinant receptor-binding domain (RBD) of the spike (S) protein with high avidity for specific antibodies. The aim of the study was to obtain and characterise a SARSCoV-2 S-protein RBD homodimer and a recombinant RBD-expressing cell line, as well as to create an ELISA system for detecting potential neutralising antibodies. Material(s) and Method(s): the genetic construct was designed in silico. To generate a stable producer cell line, the authors transfected CHO-S cells, subjected them to antibiotic pressure, and selected the optimal clone. To isolate monomeric and homodimeric RBD forms, the authors purified the recombinant RBD by chromatographic methods. Further, they analysed the activity of the RBD forms by Western blotting, bio-layer interferometry, and indirect ELISA. The analysis involved monoclonal antibodies GamXRH19, GamP2C5, and h6g3, as well as serum samples from volunteers vaccinated with Gam-COVID-Vac (Sputnik V) and unvaccinated ones. Result(s): the authors produced the CHO-S cell line for stable expression of the recombinant SARS-CoV-2 S-protein RBD. The study demonstrated the recombinant RBD's ability to homodimerise after fed-batch cultivation of the cell line for more than 7 days due to the presence of unpaired cysteines. The purified recombinant RBD yield from culture broth was 30-50 mg/L. Monomeric and homodimeric RBD forms were separated using gel-filtration chromatography and characterised by their ability to interact with specific monoclonal antibodies, as well as with serum samples from vaccinated volunteers. The homodimeric recombinant RBD showed increased avidity for both monoclonal and immune sera antibodies. Conclusion(s): the homodimeric recombinant RBD may be more preferable for the analysis of levels of antibodies to the receptor-binding domain of the SARS-CoV-2 S protein.Copyright © 2023 Authors. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL